skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scro, AK"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Investigating animal gut microbiomes can lead to a better understanding of their foraging preferences and their overall health. In this study, the fecal and cloacal microbiomes of 4 cold-stunned, frozen loggerhead Caretta caretta, 9 Kemp’s ridley Lepidochelys kempi , and 5 green sea turtles Chelonia mydas that stranded on beaches in Massachusetts, USA, were surveyed. Cloacal swabs and in situ fecal samples were collected from each turtle. From the extracted DNA, the hypervariable V1-V3 regions of the 16S rRNA gene were amplified with PCR, then sequenced using next generation Illumina MiSeq technology. Fecal and cloacal microbiomes were primarily composed of the phyla Proteobacteria , Bacteroidetes , and Firmicutes . Microbial communities varied significantly based on location of the gut sampled. Cloacal samples were largely dominated by Proteobacteria , while fecal samples appeared to have a greater distribution of taxa and higher alpha diversity. Green turtles had a higher abundance of Firmicutes and Bacteroidetes than Kemp’s ridley and loggerhead turtles, but a lower abundance of Proteobacteria . The information gained from this study contributes to knowledge of cold-stunned sea turtle gut microbiomes and may eventually be applied to rehabilitation efforts. 
    more » « less
  2. Blue crabs Callinectes sapidus have expanded their geographic range northward in the NW Atlantic with possible trophodynamic effects on benthic communities. In this study, we examined the blue crab’s diet in 2 southern New England tidal rivers (USA) and expounded on their predator-prey interaction with juvenile winter flounder Pseudopleuronectes americanus . Blue crabs (8-185 mm carapace width [CW]; n = 1835) were collected from the Seekonk River, Rhode Island, and Taunton River, Massachusetts, between May and August 2012 to 2016, and their feeding habits were assessed via stomach content, stable isotope, and molecular genetic analyses. Blue crabs were found to be generalist carnivores-omnivores with diets varying throughout ontogeny, yet shifts in prey composition had no effect on size-based nitrogen isotope signatures and trophic position (3.50 ± 0.35, mean ± SD). Carbon isotope values indicated that detritus-macroalgae were the dominant carbon source to the food web, with additional contributions from terrestrially derived organic matter and phytoplankton in oligohaline and polyhaline waters, respectively. The main prey of blue crabs ≤49 mm CW were amphipods, shrimp, and unidentified crustaceans, and larger conspecifics fed on bivalves, crabs, and fish. Winter flounder remains, e.g. sagittal otoliths, were identified in the diet of 2.5% of field-collected blue crabs, whereas PCR-based assays detected winter flounder DNA in 17.7% of crab stomachs. Blue crabs 23 to 160 mm CW preyed on winter flounder ranging from 26 to 66 mm total length, with occurrences of predation most closely associated with increases in crab size. Blue crab predation on winter flounder also varied spatially in the rivers, reflecting site-specific differences in flounder densities, abundances of other preferred prey, and dissolved oxygen concentrations that altered predator-prey dynamics. Lastly, the current predatory impact of blue crabs on juvenile winter flounder is nearly equivalent to other portunid crab species. Anticipated temperature-mediated increases in blue crab densities at northern latitudes, however, will intensify the predator-induced mortality of winter flounder and likely hinder their recovery in southern New England. 
    more » « less